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Abstract  This paper proposes a new method for geographical simulation by applying data 
mining techniques to cellular automata. CA has strong capabilities in simulating complex systems. 
The core of CA is how to define transition rules. There are no good methods for defining these 
transition rules. They are usually defined by using heuristic methods and thus subject to uncer-
tainties. Mathematical equations are used to represent transition rules implicitly and have limita-
tions in capturing complex relationships. This paper demonstrates that the explicit transition rules 
of CA can be automatically reconstructed through the rule induction procedure of data mining. 
The proposed method can reduce the influences of individual knowledge and preferences in de-
fining transition rules and generate more reliable simulation results. It can efficiently discover 
knowledge from a vast volume of spatial data. 
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Recently, cellular automata (CA) has been increas-
ingly applied to the simulation of geographical phe-
nomena, especially urban simulation[1,2]. The re-
searches of using CA have been carried out in China 
with many publications nationally and international-
ly[3―7]. CA can be applied to the simulation of many 
geographical phenomena, such as diffusion of wild-
fire[8], population fluctuation of animals[9], evolution 
of urban systems and land use[1,2], the formation of 
idealized urban forms[3,6], planning for sustainable 
land use[10], and automatic generation of agricultural 
protection zones[11].  

Many geographical phenomena have manifested the 
features of complex systems, which cannot be repre-
sented and simulated by using mathematical equations. 
Studies have demonstrated that CA are useful tools for 
simulating complex systems[12]. The simulation of ur-

ban systems is one of these successful examples of CA 
applications[1,2,6]. Some of the early urban CA studies 
were done by Couclelis[13]. Her studies indicate that 
the CA simulation can be used as the analog to realis-
tic urban systems. Batty and his colleagues have also 
done some interesting CA studies on simulating urban 
systems[1]. Their early experiments were based on the 
diffusion limited aggregation (DLA) techniques for 
simulating the expansion of built-up areas. However, 
they began to use CA techniques for the simulation of 
urban development later. 

Transition rules are the core of CA, but the deter-
mination of these rules is very tedious. Heuristic 
methods have been used to define transition rules[14], 
including using matrix[2], multicriteria evaluation[15], 
and grey state[6]. These methods are subject to a lot of 
uncertainties and have various forms. Moreover, they 
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are implicit because of using mathematical equations. 
The definition of parameter values is very difficult. We 
used to propose the method of using neural networks 
to retrieve these parameter values automatically[7,16]. 
However, the neural networks are black-box ap-
proaches. Users have problems in comprehending the 
meanings of these parameter values and the mecha-
nisms. These methods have limitations in applications.   

In this study, a new method based on knowledge 
discovery or machine learning is proposed to recon-
struct the transition rules of geographical CA. Data 
mining has been applied to the classification of remote 
sensing data for improving the performance. It has 
also been applied to the knowledge discovery in GIS 
databases, such as classification of soil types[17]. CA 
usually involve a large amount of spatial data in simu-
lating complex geographical phenomena. The use of 
data mining can significantly enhance the simulation 
capability. The derived transition rules are explicit 
without using mathematical equations. However, no 
such studies have been reported so far for CA simula-
tion by using this technique.  

1  Data mining and geographical cellular auto-
mata 

Data mining is to discover knowledge automatically 
from databases. It has been proposed to solve the 
problems of the difficulties and uncertainties in 
knowledge solicitation. This is usually done through 
machine learning. The most common machine learn-
ing algorithms include: ID3, C4.5, CART, IB1, IB2, 
MPIL1, and MPIL2. C4.5 developed by Quinlan is the 
most popular algorithm for data mining[18]. See5 for 
Window and its Unix counterpart C5.0 are the most 
updated version of C4.5. 

The series of C4.5 use the ‘information gain ratio’ 
to determine the splits at each internal node of the de-
cision tree[18]. First, imagine selecting one case at ran-
dom from a training data set S and announcing that it 
belongs to some class Cj. The information from such a 
message (entropy) is calculated by 
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The information gained by splitting S using X 
equals 
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The bias inherent in the gain criterion with a large 
number of splits should be corrected by normalizing 
gain(X) using split info(X) 

 2
1

split info( ) log
n

i

i

S
X

S S=

⎛ ⎞
= − × ⎜⎜

⎝ ⎠
∑ iS

⎟⎟ . (4) 

Then 

  (5) gain ratio( ) gain ( ) / split info( ).X  X X=

S will be recursively split to ensure that the gain ra-
tio is maximized at each node of the tree. This proce-
dure continues until each leaf node contains only ob-
servations from a single class or no gain in informa-
tion is yielded by further splitting. The above proce-
dure automatically creates decision trees or rule sets 
based on the criterion of ‘information gain ratio’. The 
rule induction procedure is convenient and robust.  

The above techniques can be used to discover geo-
graphical knowledge from GIS databases, such as the 
spatial distribution patterns. The integration of data 
mining and CA can automatically generate transition 
rules from observation data, and calibrate the models 
simultaneously. Transition rules determine the conver-
sion of state for each cell, such as the conversion from 
agricultural land to urban land. Many existing urban 
CA do not provide concrete transition rules, but use 
mathematical equations to estimate conversion prob-
ability. They may use linear or logistic equations to 
represent the relationship between land use conversion 
and spatial variables. These equations are not strai- 
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ghtforward for decision makers to use. Actually, deci-
sion makers are more familiar with the type of explicit 
rules. For example, it is much easier for them to adopt 
some actions according to the following explicit rules: 

CA from remote sensing and GIS using urban simula-
tion as examples (Fig. 1). Remote sensing images in 
two different years are used as the observation data for 
discovering transition rules. It may be ideal if the ob-
servation interval (∆T) is equal to or close to the itera-
tion interval (∆t) so that the mined transition rules can 
be directly used in urban simulation. However, the 
observation interval of remote sensing data is usually 
year-based while the iteration interval of CA is much 
smaller. It is impractical to collect data within the it-
eration interval of ∆t. Moreover, the observation data 
cannot comprehend the long-term trend if the observa-
tion interval is too short. 

Rule 1: 

If Land use types = Forest or Wetland 

Then No development is allowed (confidence = 
0.85) 

Rule 2:  

If Land use types = Cropland 

Distance to urban centres < 10 km 

The number of developed cells in the 
neighborhood >16 Some adjustments are required when the extracted 

rules from the observation data are applied to each 
iteration of urban simulation. First, the relationship 
between the number of iterations (K), the iteration in- 

Then Development is allowed (confidence = 0.95) 

This paper attempts to discover transition rules of  

 

 

Fig. 1.  Data mining for automatically reconstructing the transition rules of geographical CA. 
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terval (∆t) and the observation interval (∆T) is as fol-
lows: 

  (6) / ,K T t= ∆ ∆

where ∆T is the observation interval by using two 
years of remote sensing data, and is the iteration 
interval between t and t+1, K is the number of itera-
tions. 

t∆

The amount of land use conversion  can be 
determined from remote sensing for the larger interval 
of ∆T. Only a portion of land use conversion took 
place in the iteration interval ∆t. The proportion of 
land use conversion between t and t+1 can be obtained 
by using the following equation: 

0Q∆

  (7) 0 0 / ,q Q K∆ = ∆

where  is the amount of land use conversion for 
the iteration interval. 

0q∆

Therefore, an additional rule is used to determine 
land use conversion besides the use of the original 
derived transition rules. This additional rule is as fol-
lows:  

If x(i, j) should be converted according to the origi-
nal transition rules 

and x(i, j) have not developed at t−1 

and 0γ β≤ . 

Then x(i, j) will be developed at t, 

where x(i, j) is the cell x at location (i, j); and 
0
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The above rule assumes that the urban growth rate 
is constant. It is not true because the growth rate is 
dynamic. More than two dates of remote sensing data 
can be used to capture this fluctuation of urban growth. 
Since the amount of land use conversion (∆Qt) is 
changing with time, the above additional transition 
rule should have the following generic form: 

If x(i, j) should be converted according to the origi-

nal transition rules 

and x(i, j) have not developed at t−1 

and tγ β≤ . 

Then x(i, j) will be developed at t, 

where  0
0 0

1t
t

Q
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2  The implementation and simulation results 

2.1  Test area and spatial data 

The proposed model has been tested in the same 
study area where our previous CA models were ap-
plied. The selection of the same study area can allow 
the comparison of the effects of various CA models. 
We have used neural networks to simplify the proce-
dure of defining transition rules and facilitate the cali-
bration of CA[16]. However, the transition rules of this 
model are not transparent because of the back-box 
approach of neural networks. The extraction of ex-
plicit transition rules from data mining is very impor-
tant for understanding the mechanisms of complex 
urban systems. This model has more advantages than 
our previous models because of using data mining 
techniques. There are no studies on deriving transition 
rules from observation data by using data mining 
techniques so far.  

The first step of the method is to prepare the train-
ing data for the rule discovery. A series of spatial data, 
which are from remote sensing and GIS, are used for 
the data mining. The data include the layers of urban 
development, proximity variables, neighborhood con-
ditions, and physical attributes (Table 1). Satellite TM 
images in four years, namely 10 December 1988, 24 
December 1993, 29 August 1997, and 20 November 
2001, are used to calibrate the CA model. The obser-
vation data mainly include the 1988 and 1993 satellite 
TM images for deriving the transition rules. The 1997 
and 2001 images are used for capturing the urban de-
velopment trend for simulating future urban develop-
ment. The development trend can even be obtained 
from statistical yearbooks when there are no enough 
satellite images.
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Table 1  Spatial variables used for data mining 

Spatial variables Acquisition methods Value ranges 

1. Target variable 1-converted to urban areas; 

Urban development in 1988―1993 
Classification of satellite TM images 

0-non-converted 
2. Proximity variables   

Distance to the city proper (PropD) Eucdistance of ARC/INFO GRID 0―60 km 
Distance to town centres (TownD)  0―30 km 
Distance to roads (RoadD)  0―20 km 

Distance to expressways (ExprD)  0―60 km 
 

Distance to railways (RailD)  0―60 km 
3. Neighborhood function   

Number of developed cells in the 7×7 neighborhood (Nsum) Focalsum of ARC/INFO GRID 0―49 
4. Physical attributes of a site  1-crop; 

Land use types (Land) Classification of satellite TM images  2-bared soil; 
  3-construction sites; 
  4-orchard; 
  5-built-up areas; 
  6-forest; 
  7-water 

Agricultural suitability (Agsu) Land evaluation of GIS 0―1 
Slope (Slope) DEM of GIS 1―90º 

 

2.2  Data mining for deriving transition rules 

These spatial variables have huge sets of data vol-
ume. It is inefficient to process the entire set of spatial 
data for data mining. Even though See5 is relatively 
fast, a much longer time is needed for building deci-
sion trees, especially when options such as boosting 
are employed. Secondly, it is undesirable to use a 
whole set of data for mining because of spatial auto-
correlation. Bias will be introduced to analysis results 
if the training data have severe correlation. Using a 
smaller set of training cases may be at the cost of pos-
sible reduction in the classifier’s predictive perform-
ance. The training data were divided into two groups: 
one for deriving rules, and another for examining pre-
dictive accuracy. Fig. 2 clearly shows the relationships 
between the increase of sampling points and the pre-
diction error. The prediction error is 35.2% by using 
1% of the training data, and becomes 25.0% by using 
10% of the training data. The improvement rates are 
insignificant after the first 10% of the data. Therefore, 
this study only used the sample of 20% to derive the 
transition rules. 

 
Fig. 2.  Sampling rate and the prediction error. 

A very large and complex decision tree is often pro-
duced because the tree may overfit training data. If the 
training data contain errors, overfitting the tree to the 
data can result in poor performance. The original tree 
must be pruned to minimize such a problem. The 
default value of pruning rate (25%) from See5.0 was 
used to simplify the decision tree.  

The 1988 and 1993 satellite TM images were used 
to derive the transition rules. These derived transition 
rules were then used to simulate the urban dynamics in 
1988―2005. Fig. 3 shows the development trajectory 
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of the study area in 1988, 1993, 1997 and 2001 ac-
cording to the classification of satellite images. Urban 
expansion was astonishing in 1988―1993. The rate of 
urban expansion became less in the later periods as a 
result of government intervention. If the projection of 
urban development is only based on the 1988 and 
1993 observation data without using information on 
development trend, the simulated urban areas will be 
much larger than the actual ones for the later periods. 

 

 
Fig. 3.  Monitoring of the development trajectory of Dongguan using 
the 1988, 1993, 1997 and 2001 TM images. 

There are many iterations of simulation before the 
final outcome is obtained. A shorter interval between t 
and t+1 means that a larger number of iterations are 
required. Although there is no consensus on what ex-
act number of iterations should be used, 100―200 of 
iterations are quite normal for producing realistic 
simulation. The subtle patterns cannot be produced if 
there are too few iterations. It is because local interac-
tions only take place at each iteration of urban simula-
tion. 

The transition rules from data mining were used to 
simulate the urban dynamics of Dongguan in 1988―
1993, 1993―1997, 1997―2001 and 2001―2005. A 
total of 200 iterations were used for the simulation of 
urban growth in each period. The amount of urban 
growth (∆Qt) for each period was obtained based on 
the change detection of remote sensing. The global 
constraint factor (βt) was calculated according to eq. 
(9). Table 2 lists the parameter values that were used 
in the simulation.  

The See5 system was used to discover knowledge  

Table 2  Iterations, intervals, and the amount of urban growth 
for each period 

 1988―1993 1993―1997 1997―2001 2001―2005

K (iterations) 200 200 200 200 

∆T (year) 5 4 4 4 

∆t (year) 1/40 1/50 1/50 1/50 

∆Qt (km2) 233.3 90.6 62.9 25.0 

∆qt (km2 ) 1.167 0.453 0.315 0.125 

βt 0.0050 0.0019 0.0013 0.0005 

 

from GIS and remote sensing data. The rule sets were 
obtained from the data mining procedure. The follow-
ing examples are some of the derived rule set:  

Rule 1 
If PropD < 30 

RoadD <= 5 
Nsum > 18 
Agsu < 0.8 
Land = 1 

Then Converted to urban development
[0.92]

 

Rule 2 
If PropD <= 25 

TownD > 7 
Nsum >= 12 
Agsu <= 0.5 
Land = 4 
Slope <= 6º 

Then  Converted to urban development
[0.86] 

These transition rules are much clearer and simpler 
than mathematical equations. They can better reflect 
the mechanism of urban development. Each applicable 
rule votes for its predicted class with a voting weight 
equal to its confidence value. The confidence value is 
also automatically obtained by See5 during the data 
mining process. The votes are totted up, and the class 
with the highest total vote is chosen as the final pre-
diction. 

Because of the discrepancy between the observation  
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ally took place along roads. These dispersed develop-
ment patterns can significantly increase energy con-
sumption and cause wasteful use of land resources. 
The simulation of urban development can help to ana-
lyze and forecast the impacts of land use policy on 
land use changes. The CA simulation can be an effec-
tive tool for urban planners. 

It is unrealistic to reproduce the exact patterns of a 
natural phenomenon because of the complexity of na-
ture and the limitations of modelling. However, the 
assessment of goodness-of-fit is usually required to 
give a general indication on how the simulation is 
similar to the observation. The assessment can be 

[0

 

Rule 3 
If PropD <= 48 

TownD > 13 
RoadD > 1 
RoadD <= 5 
Nsum >= 9 
Agsu > 0.2 
Agsu <= 0.4 

Then   Converted to urban development
.90] 

∶ 

∶ 
l and the iteration interval, βt is calculated and 
llowing additional rule is also jointly used to 
 the final land use conversion at each iteration 
 to t+1: 

imulation results and verification 

 model simulates the urban growth of the study 
n the period of 1988―1993, 1993―1997, and 

2001. The initial stage is based on the 1988 
 urban areas detected from remote sensing. Fig. 
s the simulated urban development in 1988―
1993―1997, and 1997―2001. Fig. 4(b) is the 

 urban development in the same periods from the 
ication of remote sensing. Fig. 5 is the predic-
f urban development in 2001―2005 based on 
nsition rules. The region witnessed fast urban 

sion in the early 90s, but the rate of urban ex-
n was much less in the later periods because of 
pment control. No compact development pat-
ere formulated because land development usu-

based on cell-by-cell comparison or aggregated com-
parison. The first method is very simple just by over-
laying the simulated and actual patterns. The second 
method emphases the aggregated patterns for the as-
sessment instead of just using the cell-by-cell com-
parison. The spatial patterns of a geographical phe-
nomenon usually involve many features, such as con-
nectivity and fractal dimensions.  

In this study, the actual urban areas in 1993, 1997 
and 2001 were obtained from the classification of sat-
ellite TM images. The simulated urban areas were 
compared with the actual urban areas using overlay 
analysis. Table 3 lists the overall accuracy obtained 
from the cross-tabulation of the overlay analysis. The 
overall accuracy is 82.0% for simulating the urban 
growth in 1988―1993. It becomes 74.8% and 72.4% 
for simulating the urban growth in 1993―1997 and 
1997―2001 respectively. It can be seen that although 
the transition rules were derived from the 1988―1993 
time period, the urban development process captured 
by the transition rules has not changed much and quite 
a high simulation accuracy is obtained in the simula-
tion of urban development in 1993―1997 and 1997―
2001. These figures are quite acceptable for urban 
simulation.  

Table 3  The overall accuracy of simulation compared with the actual 
urban development from satellite images in 1993, 1997 and 2001 

Year 1993 1997 2001 

Correct (%) 82.0 74.8 72.4 

∶

Additional rule 

If   

0.0050  (in 1988 1993)
0.0019  (in 1993 1997)
0.0013  (in 1997 2001)
0.0005  (in 2001 2005)

γ

−⎧
⎪ −⎪
⎨ −⎪
⎪ −⎩

≤

 Then Converted to urban development 
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Fig. 4.  The simulated and actual urban development of Dongguan in 1988, 1993, 1997 and 2001. 
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Fig. 5.  Prediction of future urban development in 2005 based on the development trend. 

 

This study also compares the simulated patterns 
with the actual patterns. Numerous indicators have 
been proposed for describing spatial patterns. How-
ever, there are no agreements on which indicator is 
most suitable for representing spatial patterns. A visual 
comparison may sometimes provide more meaningful 
results for calibrating CA models[19]. The visual com-
parison of the actual and simulated urban development 
indicates that the model is able to generate plausible 
simulation results (Fig. 4). In this study, the indicator 
of Moron I was chosen for the assessment of the ag-
gregated patterns for reducing the uncertainties. It is 
quite easy to calculate the Moron I values in the GIS 
package, ARC/INFO GRID. Moran I is a useful spatial 
indicator that can reveal the degree of spatial autocor-
relation. The indicator is able to estimate how close 
the simulated land use pattern is to the observed 
one[14].  

Table 4  Comparison of Moran I between the actual and simulated 
urban development in 1993, 1997 and 2001 

 1993 1997 2001 
Actual urban development 0.44 0.66 0.76 
Simulated urban development 0.42 0.58 0.71 

The maximum value is one which indicates the 
absolute concentration of land use. A smaller value, 
which can be below zero, indicates a more even dis-
tribution of land use. Table 4 shows the comparison of 
the values of Moran I between the actual and simu-
lated urban development in 1993, 1997 and 2001 re-
spectively. The values of Moran I indicate the good 
conformity between the actual and simulated urban 
development. The analysis is consistent with the visual 
comparison. Urban development sites in the earlier 
stage (1993) are relatively isolated because of the pre-
vailing urban sprawls. Urban developments tend to be 
more connected in the later years as they continue to 
grow. 

The overall accuracy and Moran I were also calcu-
lated for the neural-network-based CA model for the 
comparison. The overall accuracy is 0.79 and Moran I 
is 0.40 for the previous model. This indicates that the 
proposed model has improvements in terms of accu-
racy. It is because the explicit transition rules are more 
easily adapted to complex relationships than mathe-
matical equations. The most advantage of this method 
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is that the explicit transition rules can be discovered 
from observation data automatically without using 
mathematical equations. This can provide flexibility in 
the modeling process.  

3  Conclusion 

Data mining has been applied to geographical re-
searches. It can help to discover the rules about spatial 
distribution in geography. CA is a useful tool in simu-
lating geographical phenomena. It is essential to de-
fine the transition rule in CA simulation. Reliable 
simulation results cannot be achieved if the transition 
rules are not defined in a systematic and consistent 
way. Howsoever, the definition of transition rules is 
subject to a lot of uncertainties. Transition rules are 
usually implicitly represented by mathematical equa-
tions in general CA models. There are limitations by 
using these mathematical equations to represent com-
plex natural phenomena.  

It is the first time that the explicit transition rules of 
CA are directly deduced from machine learning. Much 
improvement has been made by using this method. 
The explicit transition rules can be instantly derived 
from a vast volume of geographical data by using data 
mining techniques. No mathematical equations are 
required for representing transition rules. Calibration 
is automatically carried out during rule induction from 
training data. General CA involves a lot of variables 
and the determination of the parameters for these 
variables is very difficult through model calibration.  

The model is applied to the Pearl River Delta region 
by using various years of satellite images as the ob-
servation data. The transition rules are discovered 
based on the proposed method. The transition rules are 
used to simulate the urban growth of the study area in 
1988―2001, and also forecast the urban development 
in 2005. The validity of the model has been assessed 
based on the cell-by-cell comparison and quantitative 
indicator of Moran I. The assessment indicates good 
conformity between the actual and simulated urban 
development. The study shows that this method has 
more advantages than previous methods. 
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